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We investigate the effects of using different types of statistical distributions (lognormal, gamma, and
beta) to characterize the variability of Young’s modulus of soils in random finite element analyses of shal-
low foundation settlement. We use a two-dimensional linear elastic, plane-strain, finite element model
with a rigid footing founded on elastic soil. Poisson’s ratio of the soil is considered constant, and Young’s
modulus is characterized using random fields with extreme values of the scale of fluctuation. We perform
an extensive sensitivity analysis to compare the distributions of computed settlements when different

l(eyword_s: i types of statistical distributions of Young’s modulus, different coefficients of variation of Young’s modu-
Stochastic finite elements R . ) .

Monte Carlo lus, and different scales of fluctuation of the random field of Young’s modulus are considered. A large
Random field number of realizations are employed in the Monte Carlo simulations to investigate the influence of the

tails of the statistical distributions under study. Results indicate the type of distribution considered for
characterization of the random field of Young’s modulus can have a significant impact on computed set-
tlement results. In particular, considering different types of distributions of Young’s modulus can lead to
more than 600% differences on computed mean settlements for cases with high coefficient of variation
and large scale of fluctuation of Young’s modulus. The effect of considering different types of distributions
is reduced, but not completely eliminated, for smaller coefficients of variation of Young's modulus
(because the differences between distributions decrease) and for small values of the scale of fluctuation

Soil variability
Scale of fluctuation
Coefficient of variation

of Young’s modulus (because of an identified “averaging effect”).

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty is a central aspect of geotechnical engineering [1].
The sources of uncertainty for the estimation of soil properties in-
clude inherent soil variability, measurement error, and uncertainty
in models to infer soil properties from in situ measurements [2,3].
Furthermore, when the response or the failure mode of a geotech-
nical structure is of interest, additional uncertainties exist due to
the mechanics of the problem and to the calculation models em-
ployed [4].

Uncertainties due to inherent soil variability and to measure-
ment error have been traditionally addressed using the theory of
random fields [5]. The estimation of ranges of variability of random
fields of soil properties at different scales has received wide atten-
tion [2,6,7], and several correlation models for characterization of
spatial variability of soil properties have been proposed as well
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[4,8,9]. The estimation of the spatial correlation structure of soil
formations has been mainly performed using a maximum likeli-
hood approach [3,8], although Bayesian [4] or bootstrap re-sam-
pling methods [10] have also been proposed. Given practical
difficulties with the characterization of spatial variability in real
applications, however, some authors perform sensitivity analyses
to identify the most unfavorable scale of fluctuation [11-14],
which can then be (conservatively) employed in subsequent anal-
ysis. (The scale of fluctuation, 0, represents a distance such that
the values of the random field are effectively uncorrelated for
points in the soil mass which are further apart than 0g [15].)

Random fields have also been employed to study the effects of
stochastic soil properties on a wide variety of geotechnical prob-
lems. For instance, there has been research to study the effects of
spatial variability of soil properties on liquefaction [16-19]; on
the performance of retaining walls [20]; on the stability of slopes
[21-26]; on the mechanics of fluid transport and seepage in porous
media [27-37]; on stochastic soil dynamics [38,39]; and on the
stress-strain response of geotechnical materials [40], among other
topics.

The effects of stochastic soil properties on foundation design
have also received wide attention. Griffiths and Fenton [41] revised
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Prandtl’s theory for the ultimate bearing capacity of shallow foun-
dations considering the variability of undrained shear strength;
Griffiths et al. [12] discussed the effect of the variability of un-
drained shear strength on the bearing capacity of a rough rigid
footing; and Fenton and Griffiths [11] studied the influence of spa-
tial variability and cross-correlation of friction and cohesion of
soils on bearing capacity. More recently, Popescu et al. [42] pre-
sented a sensitivity analysis to study different aspects of soil’s
shear strength randomness on bearing capacity; whereas Niandou
and Breysse [14] studied how the response of a piled raft can be
influenced by horizontal soil variability. Studies of soil-structure
interaction considering the effects of soil heterogeneity have been
presented as well [43,44].

Settlements of shallow foundations on spatially random soil
have been studied with the stochastic finite element method
[45-47] and with the stochastic integral formulation method
[48]. Analytical solutions have also been employed to compute dif-
ferential settlements of structures [49], although the main trend
has been toward the use of the finite element method in combina-
tion with Monte Carlo simulation. In that sense, for instance, sev-
eral authors have studied the sensitivity of settlement results to
changes in the mean, variance, and scale of fluctuation of geotech-
nical properties, see, e.g. [15,50,51]. Two-dimensional variability
has been considered in most cases, but the variability of soil prop-
erties in three-dimensions has also been considered in recent stud-
ies [52]. The random finite element method has also been
employed to develop a load a resistance factor approach to founda-
tion settlement [13]. Another line of research to study the effects of
uncertainties on foundation settlement has been based on the use
of field observations of actual foundation settlements. In that
sense, for instance, Sivakugan and Johnson [53] showed that the
ratio of predicted to actual settlements of shallow foundations in
granular soils follows a beta distribution, and they produced design
charts (see [54]) to compute the probability of actual settlements
being above specified limits, in which they considered settlements
predicted with four design methods that are commonly employed
in practice.

The research cited above illustrates the importance of consider-
ing the variability and uncertainty of soil properties for geotechni-
cal design. In particular, it demonstrates that the stochastic nature
of the soil can significantly reduce the reliability of geotechnical
designs; it also allows one to model the occurrence of failure
modes that cannot be identified under the assumption of homoge-
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Fig. 1. Geometry of the model.
Table 1

Input parameters varied in the simulation analyses

Parameter Values considered

Distribution type {Lognormal, Gamma, Beta}
COVg {0.1, 0.5, 1.0}
Op— {0.0, oo}

neous soil. In foundation design, for instance, the consideration of
the stochastic nature of the soil can lead to a reduction of the bear-
ing capacity or to an increase of the foundation settlement; it also
allows the identification of non-symmetric failure modes and of
differential settlements in numerical models. Such responses could
not be reproduced in a deterministic analysis with non-variable
soil properties.

In this work we study the settlement of a rigid footing founded
on spatially random soil and, in particular, we focus on the effects
of selecting different types of statistical distributions to simulate
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Fig. 2. Comparison between lognormal, gamma, and beta distributions employed to
characterize variability of Young’s modulus (E values scaled by x10 MPa).
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the random field that represents the mechanical properties of the
underlying soil. (For a study of the statistical distribution of actual
foundation settlements in granular soils, see [53].) Accurate esti-
mation of foundation settlement is an important problem of geo-
technical engineering design, as buildings and supported
elements can be damaged when settlements (in particular, differ-
ential settlements) exceed certain thresholds. For that reason, most
design codes impose limitations on the amount of total settle-
ments to reduce the likelihood of occurrence of serviceability limit
states due to excessive differential settlements [51,52,55].

Total settlements are usually computed using elasticity theory
in typical foundation design, and elastic properties of soils (i.e.,
Young’s modulus, E; and Poisson’s ratio, v) are chosen to represent
both the immediate and consolidation components of settlement
[13,51]. Constant Poisson’s ratio is usually considered due to diffi-
culties with its characterization and because it has a secondary
influence on settlement computations [15,51], although its vari-
ability has been also addressed using the beta distribution [50].
The lognormal distribution has been widely employed to model
variations of the Young’s modulus of soils, see, e.g. [15,50-52].
Arguments in favor of the lognormal distribution are that it has
zero probability of generating negative values of Young’s modulus
and that it is mathematically convenient.

However, the use of the lognormal distribution to model the
random field of Young’s modulus in finite element computations
of foundation settlement has been generally accepted (but not al-
ways) without further investigating whether it is the most ade-
quate type of distribution to model the variability of soil’s
properties in each particular case, or what would be the effects
of employing a different type of distribution. In that sense, for in-
stance, Popescu et al. [42] illustrated the importance of this aspect
of uncertainty characterization in bearing capacity analyses, and
they showed that the coefficient of variation and the marginal
probability distribution of the soil’s shear strength “are the two
most important parameters in reducing the bearing capacity (in
an average sense) and producing substantial differential settle-
ments in heterogeneous soils”. Similarly, Zhou et al. [56] studied
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the effects of uncertainties on the design of prefabricated vertical
drains, and they found that the type of statistical distribution
employed to model the coefficient of radial consolidation (they
considered the lognormal, gamma, and Weibull distributions) has
a “considerable influence” on the consolidation results.

As we will show, the selection of a specific type of statistical
distribution to model the random field of Young’s modulus of the
soil can also have a significant impact on the computed foundation
settlement results. To illustrate such a point, we compare settle-
ments computed using simulations with finite elements in which
different types of statistical distributions are employed to charac-
terize the variability of Young’s modulus. In particular, we compare
settlements computed in cases in which the Young's modulus of
the soil is modeled using the lognormal distribution (defined by
its first two moments; i.e., mean and standard deviation) with set-
tlements computed cases in which the Young’s modulus of the soil
is modeled using the gamma and the beta distributions (with the
same mean and standard deviation). The gamma and beta distribu-
tions have been selected for this study because they have the same
proposed advantages of the lognormal distribution and, in particu-
lar, they also have zero probability of producing negative values of
Young’s modulus.

2. Finite element model

We use a two-dimensional linear elastic finite element model
with a plane strain formulation to compute the settlement of a
shallow rigid footing on spatially random soil. The geometry of
the model is presented in Fig. 1. The finite element model has a
mesh with 1208 elements (1200 for the soil and 8 for the footing)
and 1291 nodes. The total number of degrees of freedom is 2420.
Nodes located along sides A and B (see Fig. 1) have their horizontal
displacement constrained, whereas nodes along side C have all
their displacements constrained to simulate a rigid underlying
stratum. Finite element computations are performed using the
general purpose research finite element IRIS [57]. Some aspects
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Fig. 3. Example realization of random field of Young's modulus of the soil (for 0 — 0) and the corresponding field of computed displacements: (a) E field and

(b) displacements.
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of IRIS were specifically optimized for this research to allow a large
number of analyses in a reasonable time.

The variability of the Young’s modulus of the soil is character-
ized using an isotropic two-dimensional random field. This could
be a limitation, as most soils have a stronger correlation structure
in the horizontal direction than in the vertical direction; following
Fenton and Griffiths [52], however, the use of anisotropic random
fields is left as a refinement for site-specific studies. This model
has the additional limitation that it does not consider the variabil-
ity of soil properties in the out-of-plane direction; in other words,
it considers that the scale of fluctuation in this direction is infinite,
so that the Young’s modulus of the soil in this direction is constant
for each particular realization [15]. The consequences of consider-
ing a two-dimensional model, however, have been found to be not
very significant [52] and, at the same time, considering a two-
dimensional model allows us to perform more extensive simula-
tions that explore the effects of slight differences at the tails of
the statistical distributions that model Young’s modulus.

We apply a vertical point load of value 10 kN on top of the rigid
footing. The material properties of the soil are a constant Poisson’s
coefficient, v=0.25, and a random Young’s modulus E. Different
types of statistical distribution are employed to characterize the
variability of Young’s modulus, as well as different coefficients of
variation and scales of fluctuation (see Section 3). To model the
footing as a rigid foundation, we select a Young's modulus for
the footing which is orders of magnitude higher than the Young'’s
modulus of the soil. The output variable of the model is the settle-
ment of the central point of the footing. (We consider settlements
to be positive for downward movement.) Such settlement corre-
sponds with the vertical displacement of point S in Fig. 1.

3. Monte Carlo simulation

We perform an extensive Monte Carlo simulation analysis using
the finite element model presented in Section 2. In particular, we
consider three types of statistical distributions (lognormal, gamma,
and beta) to model the variability of Young’s modulus of the soil be-
low the footing. To ease the comparison of results, simulations are
performed using the same mean and standard deviation for all dis-
tributions. The mean Young’s modulus of the soil is yg = 10 MPa in
all cases, and standard deviations considered are og={0.1, 0.5,
1.0} x 10 MPa. That is, the coefficients of variation of Young’s mod-
ulus are COVg = {0.1, 0.5, 1.0}. These values of COVE are thought to
be representative of ranges of variability that can be expected for
typical soils; for instance, Phoon and Kulhawy [2] propose values
of COVE (due to inherent variability only) in the range of 15-65%,
although they also present data for one case (see Fig. Al in their pa-
per) in which COVg due to inherent variability is more than 90%.

Similarly, we consider two extreme values of the scale of fluctu-
ation: 0g — 0.0 and 0 — oo. This simplified model has the advan-
tage that it removes the influence of the type of correlation
structure considered (e.g., exponential, squared exponential, etc.)
as, for any correlation structure, values of E at each element be-
come statistically independent as 0g approaches zero, whereas they
are identical in every element of the finite element model (for a gi-
ven realization) as 0 tends to infinity [15]. (Considering only two
such extreme values of the scale of fluctuation largely simplifies
the process of random field modeling for assignment of E values
to each element of the finite element mesh. The reason is that a
random number generator for the selected statistical distribution,
such as those widely available in standard mathematical packages,
is the only tool needed for the task.) Table 1 lists the input param-
eters that are varied in the sensitivity analysis performed, while
keeping constant the footing geometry, vertical load, and Poisson’s
ratio and mean Young’s modulus of the soil (see Section 2).

Fig. 2 shows a comparison between the cumulative density
functions (CDF) of the lognormal, gamma, and beta distributions
employed for characterization of Young’s modulus in the simula-
tion analyses. The same mean value of Young’s modulus ug is
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considered in all cases. As observed, distributions are almost iden-
of the coefficient of variation (i.e., when
they increase their differences as COVg

tical for small values
COVg =0.1), whereas
increases.
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Monte Carlo simulations consist of a total of 240,000 realiza-
tions of the Young’s modulus random field that are performed, as
part of a comprehensive sensitivity analysis, for each combination
of Young’s modulus distribution type, coefficient of variation,
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Fig. 5. Comparison between distributions of computed settlement for lognormal and gamma distributed Poisson’s modulus.
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COVE, and scale of fluctuation, 0k (see Table 1). Note that the num-
ber of realizations in each simulation is significantly higher than
those considered in other analyses of random foundation settle-
ments reported in the literature. Such large number of simulations
allows us to account for the effects that the tails of the statistical
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distributions (i.e., those values with low probability of being sam-
pled) have on the computed settlement results.

In the case of 0z — 0.0, foundation settlements are computed,
for each realization of the random field, using the finite element
model presented in Section 1. In the case of realizations with
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constant Young’s modulus for the entire domain (i.e., 0g —» o),
however, there is no need to perform finite element computa-
tions for each realization and settlements can be easily
scaled from a single finite element computation, as follows

[51,52]:
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Fig. 7. Comparison between distributions of computed settlement for lognormal and gamma distributed Poisson’s modulus.
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where Jqe; is the settlement result of a single (deterministic) finite
element calculation using E = y for all elements of the finite ele-

ment model.
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Fig. 3(a) shows an example realization of the simulated random
field of Young’s modulus for the case of 0 — 0. The corresponding
displacement field is presented in Fig. 3(b).

4. Computed results

Fig. 4 shows box-and-whisker plots of the distributions of set-
tlements computed with the Monte Carlo simulation described in
Section 3. The horizontal lines inside the boxes indicate the statis-
tical median settlement (i.e., half of the settlements are higher, and
half lower, than this value), whereas extremes of the boxes indicate
the first and third quartiles of the computed settlement distribu-
tion. Whiskers in Fig. 4 extend to points that are within 2.5 times
the inter-quartile range, and computed settlements that are outsize
that range are explicitly indicated using point symbols. (Note also
that settlements in Fig. 4(c) are presented in a logarithmic scale.)

As expected, Fig. 4 shows that the variability of computed set-
tlements increases as the variability of Young’s modulus of the soil
increases (i.e., as COVg increases). Results also show that the vari-
ability of computed settlements is significantly higher for large
scales of fluctuation (i.e., when 0 — oo). In other words, smaller
scales of fluctuation tend to produce similar results for different
realizations of the random field. (To model this “averaging effect”,
it has been suggested that the geometric average is the best way to
characterize the equivalent deformability of the soil mass around
the foundation [51,52].) For large scales of fluctuation, however,
this averaging effect is not present, and computed settlements
are more sensitive to the type of statistical distribution considered.
In that sense, for instance, Fig. 4(b) and (c) show that, specially for
large values of 0 and large values of COVE, the type of distribution
can have a significant influence on the distribution of computed
settlements. This is due to the different tail-behavior of the lognor-
mal, gamma, and beta distributions, even when they have the same
mean and standard deviation. For instance, Fig. 2(c) shows that the
gamma distribution has much higher probability of producing val-
ues in its left tail; such low values of Young’s modulus are respon-
sible for producing corresponding high values of settlement.

Figs. 5-7 present qqg-plots that compare the distributions of
computed settlements when the random field of Young’s modulus
is characterized with the lognormal, gamma, and beta distribu-
tions. (qqg-plots are employed in statistics to assess if two samples
come from the same distribution; if that is the case, points on the
qq-plot should lie on a straight line at 45°.) Fig. 5 shows that, as ex-
pected, the type of statistical distribution considered for Young’s
modulus has a negligible effect on computed settlements when
such distributions are very similar (i.e., when the variability of
Young’s modulus is small; COVg = 0.1). The effect of the type of sta-
tistical distribution to characterize Young’s modulus is signifi-
cantly higher as COVg increases and, for the same COVg, for large
values of the scale of fluctuation (i.e., 0 — oo). That is, the type
of statistical distribution employed to model Young’s modulus
has a stronger effect on computed settlements as the distributions
of Young’s modulus are more different (i.e., as COVg increases) and
as the averaging effect is less significant (i.e., as 0 — oo).

The observation that the influence of the type of statistical dis-
tribution increases as COVEg increases agrees with the results ob-
tained by Zhou et al. [56] when they studied the problem of
consolidation with vertical drains. In particular, Zhou et al. [56]
found that influence of the type of distribution considered “in-
creases considerably when the COV [of the horizontal coefficient
of consolidation] increases”. Note, however, that they did not em-
ploy random fields in their analysis and, therefore, they do not pro-
vide information about the influence of the type of distribution
when different values of the scale of fluctuation are considered
to model the random field of soil properties.

Table 2 illustrates the variation of computed mean settlements,
for different scales of fluctuation, as differences between statistical
distributions of Young’s modulus increase (i.e., as COVg increases).
Our results show that computed mean settlements tend to the
deterministic value of settlement (in this case Jdger = 1.40 mm) as
COVE approaches zero, with results more similar to dgec as COVg be-
comes smaller. In other words, the variability of Young’s modulus
of the soil tends to produce (in an average sense) larger settle-
ments. At the same time, as we discussed above, our results also
show that there is an “averaging effect” for small scales of fluctu-
ation (i.e., 0 — 0) that significantly reduces the effects of consider-
ing different types of statistical distributions of Young’s modulus.
Despite such averaging effect, however, the influence of the type
of distribution can still be significant, and Table 2 shows that (for
COVE = 1.0) a random field of Young’s modulus with gamma distri-
bution can produce mean settlements that are up to 18% higher
than settlements computed with a random field of Young’s modu-
lus with lognormal distribution (for the same mean and standard
deviation). Similarly, mean settlements computed with the beta
distribution can be up to 23% higher than settlements computed
with the lognormal distribution.

Table 2 also shows that the mean settlement can be signifi-
cantly higher when such “averaging effect” is not present (i.e.,
when 0 — o), specially for cases with high variability of proper-
ties (i.e., high COVEg). In such cases, it is observed that the type of
distribution has a critical effect on computed settlements and, in
particular, it is also observed that both the gamma and beta distri-
butions produce mean settlements that are significantly higher
than those computed with the lognormal distribution. For instance,
for COVg = 1.0 and 0 — oo, the gamma distribution produces mean
settlements that are more than 600% higher than mean settlements
computed with the lognormal distribution; whereas the beta dis-
tribution produces mean settlements that are more than 200%
higher than mean settlements computed with the lognormal
distribution.

Table 3 illustrates the variation of the computed standard devi-
ation of settlements as the difference between the statistical distri-
butions of Young’s modulus increases (i.e., as COVg increases)
when different scales of fluctuation are considered. As discussed

Table 2
Mean foundation settlements computed with different statistical distributions
considering different ranges of variability of soil Young’s modulus

Distributions Og— COVg
0.1 0.5 1.0

Lognormal 0 1.405506 1.563167 1.982429
Gamma 0 1.405510 1.585055 2.337585
Beta 0 1.405586 1.604132 2439610
Lognormal 00 1.412745 1.749519 2.800917
Gamma 00 1.413047 1.862464 17.537013
Beta 00 1.413184 1.943004 6.451887
Table 3

Standard deviation of settlements computed with different statistical distributions
considering different ranges of variability of soil Young’s modulus

Distributions Og— COVg

0.1 0.5 1.0
Lognormal 0 0.01321550 0.07091457 0.16461638
Gamma 0 0.01330829 0.08152655 0.31380578
Beta 0 0.01341906 0.09036828 0.30383636
Lognormal 00 0.1414753 0.8747804 2.7978748
Gamma 00 0.1428554 1.3026505 1082.7932422
Beta 0o 0.144897 1.423578 14.839530




482 R. Jimenez, N. Sitar/Computers and Geotechnics 36 (2009) 474-483

above, the variability of computed settlements is observed to in-
crease (for the same distribution) as COVg increases. Such an in-
crease is even more significant for large scales of fluctuation (i.e.,
when the averaging effect is not present; 0g — o). Finally, note
that the type of distribution also affects the variability of computed
settlements significantly. In that sense, the results show that the
standard deviation of settlements computed with the beta distri-
bution can be about one order of magnitude higher than the stan-
dard deviation of settlements computed with the lognormal
distribution; whereas the standard deviation of settlements com-
puted with the gamma distribution can be up to several orders of
magnitude higher than the standard deviation of settlements com-
puted with the lognormal distribution.

5. Conclusions

We investigate the effects of using different types of statistical
distributions (lognormal, gamma, and beta) to characterize the
variability of Young’s modulus of soils in random finite element
analyses of shallow foundation settlement. To that end, we per-
form an extensive sensitivity analysis to compare the distributions
of computed settlements when different types of statistical distri-
butions of Young’s modulus, E, different coefficients of variation,
COVE, and different scales of fluctuation of the random field, 0O,
are considered. A large number of realizations are employed in
such Monte Carlo simulations to investigate the influence of the
tails of the statistical distributions under study.

As expected, our results show that distributions of computed
settlements are very similar when low values of the coefficient of
variation (for the same mean value) are employed for all the distri-
butions considered (i.e., when the distributions of Young’s modu-
lus are almost identical). Similarly, our results show that there is
an “averaging effect” when the random field of Young’s modulus
has small scales of fluctuation (i.e., when values of soil deformabi-
lity at different elements of the random field are independent or,
equivalently, when 0 — 0.0). Such “averaging effect” makes settle-
ment results to be similar among different realizations of the ran-
dom field and it reduces the effect of considering different types of
statistical distributions of Young’s modulus, although it does not
eliminate it completely. In this case, for instance, our results sug-
gest that mean settlements computed with the lognormal distribu-
tion tend to be lower than mean settlements computed with the
gamma and beta distributions (for the same pg and COVE). In par-
ticular, for COVg=1.0, our results show that a random field of
Young’s modulus with gamma distribution can produce settle-
ments that are (in an average sense) up to 18% higher than settle-
ments computed with the lognormal distribution. Similarly,
settlements computed with the beta distribution can be up to
23% higher (in an average sense) than settlements computed with
the lognormal distribution.

The influence of the type of distribution can be significantly
higher when the scale of fluctuation increases to its other extreme
(i.e., when 0g — o) or, equivalently, when all the soil elements are
assigned an identical (but random) value of Young’s modulus for a
given realization of the random field. In this case the “averaging
effect” does not exist, and the influence of the tails of the distribu-
tions of Young’s modulus of the soil is maximum. In this case, for
instance, our results show that settlements computed with the log-
normal distribution also tend to be lower than settlements com-
puted with the gamma and beta distributions (for the same ug
and COVg). In particular, for the case of COVg=1.0, our results
show that a random field of Young’s modulus with gamma distri-
bution can produce settlements that are (in an average sense) up
to more than 600% higher than settlements computed with a ran-
dom field of Young’s modulus with lognormal distribution. Simi-

larly, settlements computed with the beta distribution can be (in
an average sense) more than 200% higher than settlements com-
puted with the lognormal distribution.

Finally, the results of this research suggest that the identifica-
tion of the type of statistical distribution that is more adequate
to characterize the variability of soil’'s Young’s modulus is an
important aspect of modeling in the context of random finite ele-
ment computations of shallow foundation settlements. The charac-
terization of the range of variability of Young’s modulus, COVg, and
of the scale of fluctuation of its random field, 0, also appear as cru-
cial aspects of this problem of uncertainty characterization. De-
spite their importance, however, the level characterization of the
uncertainty of soil properties (i.e., type of distribution, mean values
and coefficients of variation, scale of fluctuation, etc.) in real geo-
technical applications is usually limited. This suggests that our
computational models have perhaps surpassed our capability to
characterize uncertainties, emphasizing the importance of future
research into this significant aspect of geotechnical engineering.
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